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Mathematical Properties of the Model

Consider the system with multiple inputs with dynamics given by:

z = f(z) + G(2)u, (1)
where
f1(z) g1i(z) - gim()
flx) = : , G(z) = : : =[g(x) - gm(®) ].
fn() gn1(x) 0 Gnm(T)
()

where z € R", u € R™ and f(z), G(x) are of appropriate dimensions.
We can define the distributions

D; =span{gi1, ..., gm, adsg1, ..., adfGm, ...,adfflgl, ...,adiflgm}

where:

adpgi = [f, 9i] = 2% f — %L gi, forany k > 1, setting ad}gi(z) = gi(),

and let D; denote the involutive closure of D;, which is the smallest involutive distribution
containing D and 5 =0,1,....,n — 1.

* Distribution D in involutive if the Lie Bracket [f; (z), f; (x)] for any pair of vector fields f;(z), f; (z) belonging to
D is a vector field which belongs to D.
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Mathematical Properties of the Model

Aim
analyze properties of underactuated 3 DOF pendulum
stabilize it in vertical position

@ When the system is underactuated, full feedback linearisation is not possible.

@ The system should be decomposed into two subsystems, one which is linear, and one
which stays still nonlinear.

@ An important issue is the maximal dimension of the linear subsystem that might be
obtained.
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Robot Model

v
Ay
3-link robot
@ N = 3rigid bodies coupled in a tree structure
@ supported on ground via an actuated
frictionless revolute joint
. @ one degree of underactuation (3 DOF with
2 independent actuators)
Table 1: Robot parameters
m; —Mass Centre of mass L; — Length Inertia
[kg] [m] [m] [kg m?]
» 1118 0.062 0.07 0.0118
X 1.593 0.074 0.15 0.0119
_ 0.405 0.134 0.295 0.0117

Figure 1: 3-link pendulum
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Robot Model

In order to establish the system dynamics one can define Lagrangian
L=K-V

while K = 14" M(q)¢ denotes kinetic energy, with M being a positive definite inertia
matrix, and V' is the potential energy.
Next, taking into account the actuation on the system (Fig. 2) one obtains

doL 9L _ [m, k=12
dt ¢y  Oqn |0, k=3
with 7, € R.

D
/0

Figure 2: Triple pendulum — underactuated model
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Robot Model

The overall model of dynamics can be written in a standard form of:

M(q)i+Clq,4)i+G(q) =T

where matrices M, C, G are as following:

mi1 mig
M = ma1 mog

m31 m32

or in equivalent form:

m33 €31 €32 €33

mi1Gi + miz2gz + misds + p1 + G1
ma1g1 + mazga + masz@s + p2 + Ga
mas1Gi + msage + masgs + ps + Gs

where:
w1 = ciiqi + ci2gz + ci3gs,
p2 = c21q1 + C22qG2 + C234G3,
B3 = 3141 + c32G2 + €33G3.
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The elements of the M mass matrix are as follows:

where

ai
a2
a3
a4
as

mi1 = ai1+az+as+as+as+2(ri+r2+r3)
mi2 = a2x+az+as+r1+r2+2r3
mig = az+7r1+7rs3
me1 = M2
mo2 = a2+ asz~+as+2r3 (7)
me3 = a3+7T3
ms1 = mi3
m32 = Ma3
m3z = as
miLZ + 1
maLZs + Ia r1 = LiLe.amscos(gz + q3)
m3L§3 + I3 R ro = I (L2m3 + Lc2m2) COS g2 (8)
malL3 rg = LoLc.zmscosgs.

(ma2 +ms)L7



Matrix C' and G

The Coriolis matrix C' is:

c11 = —dido — dags c12 = —d1(q1 + ¢2) — da2gs ci3 = —d2(q1 + g2 + ¢3)

co1 =di¢an —dsgs ,  co2 = —dsqs , c23 = —d3(d1+ G2+ q3)
c31 = d2g1 + d3ge c32 = ds(q1 + g2) c33 = 0.
9)
with
di = LiLesmssin(qz + ¢3) + (maLea + msL2) L1 sin g2
d» = LiLesmssin(qe + g3) + LaLesms sin gz (10)
d3 = L2L03m3 sin qs.

The Gravity force matrix G is as follows:

G1 = g(b1+0b2+bs3)
Gy = g(b2+10bs3) (11)
G3 = gb3
where:

b1 = miLcicosqgi + (m2 +ms)L1cosq

ba = (maLea+ maLa)cos(q1 + q2) (12)

bs = maLcscos(qi + g2 +g3).

g gravitational acceleration
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Partial linearization conditions

Let’s recall the equations of motion in the following form

mi1 miz2  Masg G1 Ci1 Ci2 C13 Q1 G1 T1
miz M2z Mmas| [fo| + [co1 c22 c23| [go| + |G2| = |2 - (13)
mi3  ma3  Mmas| |d3 €31 €32 33| |g3 G3 0

and assume that C1 = [c11, c12, c13] ¢, C2 = [ca1, €22, c23] ¢, Cs = [c31, €32, ¢33 4.

In the following step, we can linearize this dynamics with the use of collocated linearization

_ masdi + mesde + O3 + G
m3s3

Gs =
Introduce linearizing controller:

T1 = M11v1 +Mmiz2vz + C1 + Gy

itz 14
To = Ma21v1 + Ma2v2 + Ca2 + Go (4)
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Partial linearization conditions

where
mi1 = mu+Jima
mi2 = mi2+ Jims2
M1 = mo1 + Jamgr ’
22 = ma2 + Jomaz
for J1 = —@ Jz = _7TL23

Ci = Ci+Jips
Cy = Co+ Jous
G = Gi+ 1Gs
62 = Gs + J2Gs.

ms.
and vy i v are addmonal control inputs, described later.

Calculations are valid when the system is not in its singularity, when:

det[

— —1
mi1 M2 .
ma1 Ma22

det M

0,

Here mss > 0 and det M > 0 by definition.
Ji1 # 0and J; # 0, respectively, for two cases:
@ a3z = M3L3(L1 + Lg) forga =0, g3 = ™ + 2km;
a3 < m3L3(Li + Lg) for solution of the following equation: a3 = —r; — r3.
@ a3z = mazLaLs for g3 = 7 + 2km;

a3 < m3LaLs for g3 = — arccos(

K. Koztowski

ms L2L3)

Control of underactuated systems 5.11.2020

13/27



Partial linearization conditions

In Eq. (14 ) variables v1 and vz are new control inputs. Thus, considered system can be
written in the following form

G = wn
i = v (15)
gz = —mg; (ms1G1 + ms2ga + Cs + Gs)

or alternatively, introducing the state vector as:
xr = [qlv'u)la(]27,'-027‘]371”3]T (16)

and substituting Cs + Gs = Rs — J1R1 — J2Ro,
the pendulum model is

q1 = w

wl = U1

2 = w2 (17)
w2 = V2

Gs = ws

w3 = Rz+Ji(v1 — Ri) + Jo(v2 — Rz).
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Partial linearization conditions

Using more general form, the above equation (17) can be written as:

i = f(2) + gla)u

or
g1 w1 0 0
w1 0 1 0
j 0 0
8 Y T Y I Y I PO
qs w3 0 0
w3 Rs — JiR1 — J2R2 Ji Jo
—— ——
f(z) g1() g2(x)
where: Ji(gz,q3) = —77”13;,(:1323"13), J2(g3) = _7mi§,§;;3) and R; = M~ '(i)(—C(q,§)q — G),

where M~ (i) is an i-th row of the inverse of Mass matrix M.
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Largest feedback linearizable subsystem

@ As mentioned before, underactuated systems are not fully linearizable

@ The question arises — what is the largest feedback linearizable subsystem of the whole

system?

In order to find the largest linearizable subsystem we propose to analyze the following
distributions:

@ Do = span{gi, g2} — obviously is involutive
e D= Span{gla g2, [fa g1]7 [f7 QQ]} — not involutive

One needs to find smallest involutive closure of D1

® D, = span{g1, g2, [f, 91}, [f, 92], [91, ad s g:]} — not involutive
® D; = span{g1, g2, [f, 91], [f, 92], [92, ad s g2]} — not involutive
@ other combinations — not involutive

® Dy =span{g1, g2, [f, 91, [f, 92], [91, adsg2] , [ad g1, adfga]} — involutive
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Largest feedback linearizable subsystem

Frobenius Theorem
A nosingular distribution is completely integrable if and only if is involutive.

Then one needs to find an output function h that anihilates D1, i.e.

[%%%%%%] [917 g2, [fvgl] [f792]7[glvadfgl]7 [adfgbadng]] =0

As a result we get:

oh  _ Oh _(  Oh _q  Oh _(  Oh _ on _ . (19)

owy ~— Owog dwsg ~ 9q3

It is trivial that the only solution of Eq (19) is h = constant because D is of full rank 6.

As a conclusion — the largest feedback linearizable subsystem is of dimension 4.
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Largest feedback linearizable subsystem

The Lie brackets used in the above calculations are as follows:

[f, 91] = [-1000 —Ji Fie]"
[f?Q?] = [ 0—-10 —J2F26]T
(91, adsg1] = (00000 Fs]"
91, ad s g2] = [00000 Fes] "
92, adyg1] = [00000 Frg]"
[92, ad s g2] = (00000 Fg]"
ladfgr,adsga] = [0000 Fos F96)] ,
where:
=[01000J,]"
=[00010J2]"
Fie = ﬁ(Ll sin(gz + ¢3)[2w1 4 w2 4 w3] + Lo sin(gs)[2w1 + 2wa + w3))
Fas = (Lz sin(gz) (2w1 + 2wa + w3))
Fse = _*((51“(2‘12 + 2q3) L} + 2sin(qz + 2q3) L1 L2 + sin(2q3)L3))
Foe = —f3(L1Lz sin(gz2 + 2q3) + L3 sin(2gs))
Fre = — L2 (L1Lasin(g2 + 2g3) + L3 sin(2g3))
Fge = ——3L2 sin(2q3)

F95 = 7L2 L1L2 Sln(qz)
3

Fog = 712 L1 Lows COS(qg + 2(13)
3
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Stabilization problem

Aim
examine an implementation of a hybrid controller to stabilize a triple pendulum around its

top unstable position, taking into account the limitations and constraints resulting from
practical conditions (existing robot)

Stabilization will be obtained with the two commonly known approaches
@ first — which utilizes the collocated methods for linearization

@ second — the additional LQR controller is used to stabilize the system near the
equilibrium point.
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Control Algorithm

Stabilizing controller

for swing,
w={" o (21)
urin for stabilization.
up, — is used to bring the pendulum near the equilibrium pose,
Up = [Tl,TQ]T (22)
UrLin — to stabilize at equilibrium
ULin = —K(zr — ). (23)

ki1koksks ks ke

=gl 3 qd ¢t 43 431" and K = , stand for the reference state

k7 ks ko k10 k11 k12
and the controller gains, respectively.
T1, T2 are given by Eq. (14) and
v =G =+ K6 — @) + K7 (g - a) (24)
v2 = Go = G + K3 (45 — d2) + K3 (45 — a2) (25)

where KP, KT, K2 i KI are positive gains, and ¢¢, ¢¢, ¢, ¢4, ¢4, 3 denote desired
values at the equilibrium point.
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Zero Dynamics

The zero dynamics was obtained assuming that h = const and

¢f = 5.a8 = 0. = 0,45 = 0, = 0,5 = 0.
The resulting zero dynamics is calculated as follows

gs = €sings (26)
where: £ = %gmng, and partial solution of Eq. (26) is given by Eq. (27), for some

constant e; :
Gz = —\/2€cosgs + e1 (27)

ds [

Zero dynamics phase portrait (Fig. 3) was
obtained numerically, is locally stable and
formed by closed curves.

R
Figure 3: Zero dynamics
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Simulation Results

Existing robot being investigated in simulations J

3-link robot

@ driven by Maxon 200W EC-Powermax 30
brushless motors

@ planetary gearhead of N = 53
@ maximum torque of approximately 6 Nm

Table 2: Robot parameters

Figure 4: 3-link pendulum — experimental mi —Mass | Centre ofmass | L; - Length '"e”'i
test-bed [ke] [m] [m] [kg m*]
1.118 0.062 0.07 0.0118
1.593 0.074 0.15 0.0119
0.405 0.134 0.295 0.0117
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Simulation Results

Simulation conditions

@ the desired stabilization pose is the upright position for which the angles ¢, ¢ and ¢
were equal 90°, 0 and 0, respectively.

@ initial condition: ¢1, = 20°, g2, = —60° and g3, = 131° (exemplary one)

@ the torque magnitude is restricted to 6 Nm — taken from existing robot
@ simulation time ¢ = 10s.

The obtained angular trajectories are shown in Fig. 5a, while the control signal produced by
motor is depicted on Fig. 5b.

qldeg]
—

Figure 5: a) Angular position of links, b) Motor torque c) Animation.
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